Mai Thanh Hoàng
1/ a. Chứng minh công thức Hê-rông tính diện tích tam giác theo 3 cạnh a,b,c Ssqrt{pleft(p-aright)left(p-bright)left(p-cright)} (p là nửa chu vi) b. Áp dụng chứng minh rằng nếu Sdfrac{1}{4}left(a+b-cright)left(a+c-bright) thì tam giác đó là tam giác vuông 2/ Cho tứ giác ABCD. Lấy M,Nin AB sao cho AMMNNB. Lấy E,Fin BC sao cho BEEFFC. Lấy P,Qin CD sao cho CPPQQD. Lấy G,Hin AD sao cho DGGHHA. Gọi A,B là giao điểm của MQ và NP với EH, C,D là giao điểm của MQ và NP với FG. Chứng minh rằng a. S_{...
Đọc tiếp

Những câu hỏi liên quan
Mai Thanh Hoàng
Xem chi tiết
Trần Minh Tâm
Xem chi tiết
Phương An
24 tháng 10 2017 lúc 22:48

Áp dụng bđt AM - GM, ta có:

\(4\sqrt{3}S=4\sqrt{3}\times\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

\(=4\sqrt{3}\times\dfrac{\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}{4}\)

\(\le\sqrt{3\left(a+b+c\right)}\times\sqrt{\dfrac{\left(a+b-c+b+c-a+c+a-b\right)^3}{27}}\)

\(=\dfrac{\left(a+b+c\right)^2}{3}\)

\(=\dfrac{a^2+b^2+c^2+2ab+2bc+2ac}{3}\)

\(=\dfrac{3\left(a^2+b^2+c^2\right)-\left(a^2-2ab+b^2\right)-\left(a^2-2ac+c^2\right)-\left(b^2-2bc+c^2\right)}{3}\)

\(=a^2+b^2+c^2-\dfrac{\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2}{3}\)

Dấu "=" xảy ra khi a = b = c (\(\Delta ABC\) đều)

Làm linh tinh đấy -.- hổng chắc đâu Ọ v Ọ

Bình luận (0)
Neet
29 tháng 10 2017 lúc 23:21

Còn một cách rất pá đạo nữa , không hiểu nổi lấy ý tưởng từ đâu luôn:

CM:\(a^2+b^2+c^2\ge4\sqrt{3}S\)

\(\Leftrightarrow a^2+b^2+c^2-4\sqrt{3}S\ge0\)

\(\Leftrightarrow a^2+b^2+a^2+b^2-2ab.\cos C-4\sqrt{3}.\dfrac{1}{2}.ab.\sin C\ge0\)( định lý cos + CT diện tích)

\(\Leftrightarrow2\left(a^2+b^2-2ab\right)+4ab-4ab.\dfrac{1}{2}.\cos C-4ab.\dfrac{\sqrt{3}}{2}.\sin C\ge0\)

\(\Leftrightarrow2\left(a-b\right)^2+4ab\left(1-\cos\dfrac{\pi}{3}.\cos C-\sin\dfrac{\pi}{3}.\sin C\right)\ge0\)

( \(\cos\dfrac{\pi}{3}=\cos60=\dfrac{1}{2}\);\(\sin\dfrac{\pi}{3}=\sin60=\dfrac{\sqrt{3}}{2}\))

\(\Leftrightarrow2\left(a-b\right)^2+4ab\left[1-\cos\left(\dfrac{\pi}{3}-C\right)\right]\ge0\)( luôn đúng vì \(-1\le\cos\alpha\le1\))

( \(\cos\left(x-y\right)=\cos x\cos y+\sin x\sin y\))

Bình luận (0)
Nguyễn Khánh Nhi
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Trần Minh Hoàng
15 tháng 1 2021 lúc 19:19

Bất đẳng thức cần cm tương đương:

\(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le\dfrac{\left(a+b+c\right)^3}{27}\).

Mặt khác theo bđt AM - GM (Chú ý a, b, c là độ dài 3 cạnh của tam giác nên a + b - c > 0; b + c - a > 0; c + a - b > 0) ta có:

\(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le\dfrac{\left(a+b-c+b+c-a+c+a-b\right)^3}{27}=\dfrac{\left(a+b+c\right)^3}{27}\).

Vậy ta có đpcm.

Bình luận (1)
Trần Minh Hoàng
15 tháng 1 2021 lúc 19:49

Vì bạn không hiểu nên mình làm lại:

Thay \(p=\dfrac{a+b+c}{2}\) vào bất đẳng thức cần chứng minh ta có:

\(\left(\dfrac{a+b+c}{2}-a\right)\left(\dfrac{a+b+c}{2}-b\right)\left(\dfrac{a+b+c}{2}-c\right)\le\dfrac{\left(\dfrac{a+b+c}{2}\right)^3}{27}\)

\(\Leftrightarrow\dfrac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{8}\le\dfrac{\dfrac{\left(a+b+c\right)^3}{8}}{27}\)

\(\Leftrightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le\dfrac{\left(a+b+c\right)^3}{27}\).

Đến đây bạn làm tiếp như lúc nãy.

 

Bình luận (1)
Tran Huong
Xem chi tiết
Nguyễn Minh Đức Đức
15 tháng 3 lúc 22:29

a = 60cm

p = 160/2 = 80cm

p = \(\dfrac{a+b+c}{2}\) (1) => \(\dfrac{2p-a}{2}\) = \(\dfrac{b+c}{2}\)

Vì a, p là 1 hằng số nên để S đạt GTLN <=> (p-b) và (p-c) đạt GTLN

Áp dụng bđt Cosin, ta có:

\(\sqrt{\left(p-b\right)\left(p-c\right)}\) <= \(\dfrac{p-b+p-c}{2}\) = \(\dfrac{2p-b-c}{2}\)

=> \(\dfrac{S}{\sqrt{p\left(p-a\right)}}\) <= \(p-\dfrac{b+c}{2}\) = \(p-\dfrac{2p-a}{2}\) = \(\dfrac{a}{2}\)

=> 2S <= \(a\sqrt{p\left(p-a\right)}\) = \(60\sqrt{80.\left(80-60\right)}\) = 2400

=> S <= 1200 (\(cm^2\))

Dấu "=" xảy ra

<=> \(p-b\) = \(p-c\)

<=> b = c

Thay b = c vào (1), ta được:

p = \(\dfrac{a+2b}{2}\) => 80 = \(\dfrac{60+2b}{2}\) => b = c = 50 (cm)

=> đpcm

Bình luận (0)
Nam в ðình
Xem chi tiết
Hàn Vũ
19 tháng 11 2017 lúc 22:01

chuyên đề là tính các đại lượng hình học bằng cách lập phương trình nhé

Bình luận (0)
Hàn Vũ
19 tháng 11 2017 lúc 22:12

A B C H c b a x

hình, CH=x . Mọi người giải giúp mình với mình sắp học rùi

Bình luận (6)
Mei Sama (Hân)
19 tháng 11 2017 lúc 22:23

gu gồ k tính phí:

Công thức Heron – Wikipedia tiếng Việt;

Giúp mình chứng minh công thức tính diện tích tam giác với mọi người ơi !? | Yahoo Hỏi & Đáp;

Toán - Chứng minh công thức Hê - rông | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam;

https://diendantoanhoc.net/topic/46975-cach-cm-cong-he-rong/;

Công thức Hê-rông với THCS - Toán học - Nguyễn Bá Tuấn - Thư viện Giáo án điện tử

bla..bla

P/s: Sớt gu gồ ra liền mà '-'

Bình luận (3)
Lưu Đức Mạnh
Xem chi tiết
Đặng Tuấn Anh
9 tháng 8 2017 lúc 16:55

p là j vậy bạn

Bình luận (0)
Duong Thi Minh
Xem chi tiết
Cao Thành Long
Xem chi tiết
ST
10 tháng 7 2018 lúc 18:51

p là nửa chu vi =>a+b+c=2p

a, \(a^2-b^2-c^2+2bc=a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a-b+c\right)\left(a+b-c\right)\)

\(=\left(a+b+c-2b\right)\left(a+b+c-2c\right)=\left(2p-2b\right)\left(2p-2c\right)=4\left(p-b\right)\left(p-c\right)\) (đpcm)

b, \(p^2+\left(p-a\right)^2+\left(p-b\right)^2+\left(p-c\right)^2=p^2+p^2-2pa+a^2+p^2-2pb+b^2+p^2-2pc+c^2\)

\(=4p^2-2p\left(a+b+c\right)+a^2+b^2+c^2=4p^2-2p.2p+a^2+b^2+c^2=a^2+b^2+c^2\) (đpcm)

Bình luận (0)
ITACHY
Xem chi tiết
Học tốt
9 tháng 8 2018 lúc 14:35

Do a,b,c là ba cạnh của tam giác nên a,b,c >0

Với x,y\(\ge\)0, ta có:

\(\dfrac{1}{xy}\ge\dfrac{4}{\left(x+y\right)^2}\)(CO-si)

=>\(xy\le\dfrac{\left(x+y\right)^2}{4}\)

Áp dụng ba lần , ta có:

Lần 1: \(\left(P-a\right)\left(P-b\right)\le\dfrac{\left(P-a+P-b\right)^2}{4}\)(khi a=b)

<=>\(\left(P-a\right)\left(P-b\right)\le\dfrac{c^2}{4}\)(1)

Lần 2: \(\left(P-b\right)\left(P-c\right)\le\dfrac{\left(P-b+P-c\right)^2}{4}\)(b=c)

<=>\(\left(P-b\right)\left(P-c\right)\le\dfrac{a^2}{4}\)(2)

Lần 3: \(\left(P-a\right)\left(P-c\right)\le\dfrac{\left(P-a+P-c\right)^2}{4}\)(a=c)

<=>\(\left(P-a\right)\left(P-c\right)\le\dfrac{b^2}{4}\)(3)

Lấy (1) nhân (2) nhân (3), ta có:

\(\left[\left(P-a\right)\left(P-b\right)\left(P-c\right)\right]^2\le\left(\dfrac{abc}{8}\right)^2\)

<=>\(\left(P-a\right)\left(P-b\right)\left(P-c\right)\le\dfrac{1}{8}abc\)(khi a=b=c)

Bình luận (0)